

# **Constellation X-ray Mission Overview**



Jean Grady
Goddard Space Flight Center
http://constellation.gsfc.nasa.gov



# **Constellation-X Mission Update**

Mission Status Overview Jean Grady

Mission Configuration Govind Gadwal

Top Level Requirements Jay Bookbinder

Flow Down Requirements Bill Podgorski



# **Highlights from the Past Year**

### **Mission Accomplishments**

- Baselined fixed bench configuration for Reference Configuration
- Identified launch vehicle options
- Continue rigorous requirements flow down documentation

### **Technology Progress**

- Prioritized segmented optics technology as prime
- Demonstrated mandrel-limited performance on small scale replicated reflectors
- Generated segmented optics modular demonstration approach and began detail design of initial unit
- Initiated procurement of large (1.6 m) segment mandrel
- Achieved flight required energy resolution on single pixel X-ray calorimeters
- Demonstrated ability to make small, close packed TES arrays
- Built first very small X-ray calorimeter TES arrays

Positioned technology to begin flight scale demonstration



# The Constellation X-ray Mission

### Constellation-X is X-ray astronomy's equivalent of the Keck telescope





- Collecting area: 30,000 cm<sup>2</sup> at 1 keV 25 to 100 times Chandra and XMM for high resolution spectroscopy
- Spectral resolving power: 3,000 at 6.4 keV
   25 times Chandra grating
   5 times Astro-E2
- Band Pass: 0.25 to 40 keV
   100 times more sensitive than Rossi XTE at 40 keV



### **Science Overview**

### Constellation-X will open new windows towards understanding the Universe





Energy (keV



Chandra Deep Field

- Observe the effects of General Relativity near black hole event horizons
  - Probe 100,000 times closer to black hole than before
  - Determine black hole spin and mass from iron profiles over a wide range of luminosity and redshift
- Map formation and evolution of dark matter structures throughout the Universe
  - Detect ionized gas in the hot Inter Galactic Medium via absorption lines in spectra of background quasars
  - Map the distribution of dark and baryonic matter trapped in the gravitational potential of clusters
  - Observe the faintest, most distant clusters to determine redshift and mass to constrain Cosmological models and parameters
- Determine the nature of faint X-ray sources discovered by Chandra
  - Obtain detailed spectra to determine physical processes prevalent in redshifts ranging to ~5



# **Probing Black Holes**



- Constellation-X will probe close to the event horizon with 100 times better sensitivity than before
  - Observe iron profile from close to the event horizon where strong gravity effects of General Relativity are seen
  - Investigate evolution of black hole properties by determining spin and mass over a wide range of luminosity and redshift



Simulated images of the region close to the event horizon illustrate the wavefront of a flare erupting above material spiralling into the black hole. The two spectra (1000 seconds apart) show substantial distortions due to GR effects.



# Chandra Finds Black Holes Are Everywhere!

Chandra deep field has revealed what may be some of the most distant objects ever observed



Constellation-X will obtain high resolution spectra of these faintest X-ray sources to determine redshift and source conditions



### **Hidden Black Holes**





# Many black holes may be hidden behind an inner torus or thick disk of material



Only visible above 10 keV where current missions have poor sensitivity

Constellation-X will use multi-layer coatings on focusing optics to increase sensitivity at 40 keV by >100 over Rossi XTE



# "X-raying" the Cosmic Web

 Constellation-X will search for the missing baryons trapped in the Cosmic Web of dark matter



Constellation-X will probe up to 70% of the hot gas at low redshifts through OVII & VIII resonant absorption



# **Constellation-X Mission Concept**



### A multiple satellite approach:

- A constellation of multiple identical satellites
- Each satellite carries a portion of the total effective area
- Design reduces risk from any unexpected failure

### Deep space (L2) orbit allows:

- High observing efficiency
- Simultaneous viewing

### Reference configuration:

- Four satellites, launched two at a time on Atlas V class vehicle
- Fixed optical bench provides a focal length of 10 m
- Modular design allows:
  - > Parallel development and integration of telescope module and spacecraft bus
  - > Low cost standard bus architecture and components



# **Reference Design**

# Spacecraft Bus



**Launch Configuration** 



# **Launch Vehicle Options**

### Atlas V is optimal for Constellation-X (2 launches)

- Most effective means to meet full mission performance
- Thirteen launches currently planned prior to Constellation-X new start in October 2006

### Delta IV Medium could be used (2 launches)

- Requires single deployable extension on optical bench to obtain full 10 m focal length
- Seventeen launches planned prior to October 2006

### Delta II could be used (4 launches)

- Approximately 12 percent reduction of total mission effective area
- Requires extendible optical bench
- Uses solar electric power ion propulsion
- Takes 450 days to reach L2



Delta IV









Delta II



# **Constellation-X Requirements Flow Down**

#### **Science Goals**

Parameters of Supermassive Black Holes

Search for Dark Matter

Investigate Faint Sources

Plasma Diagnostics from Stars to Clusters

# Measurement Capabilities

#### Effective area:

15,000 cm<sup>2</sup> at 1 keV 6,000 cm<sup>2</sup> at 6.4 keV 1,500 cm<sup>2</sup> at 40 keV

#### Band pass:

0.25 to 40 keV

# Spectral resolving power $(E/\Delta E)$ :

- $\geq$  300 from 0.25 to 6.0 keV
- $\geq$  3000 at 6 keV
- ≥ 10 at 40 keV

# System angular resolution and FOV:

15 arc sec HPD and FOV > 2.5' (0.25 to 10 keV)

1 arc min HPD and FOV > 8' (10 to 40 keV)

# **Engineering Implications**

#### Effective area:

- Light weight, highly nested, large diameter (1.6 m) optics
- Long focal length (8-10 m)

#### Band pass:

 2 types of telescopes to cover energy range

#### Spectral resolving power:

 Dispersive and nondispersive capability to cover energy band

# System angular resolution and FOV:

- Tight tolerances on telescope figure, surface finish, alignment
- ≥ 30 x 30 array for x-ray calorimeter (pixels ~5")
- Cryocooler driven by array size and readout electronics

#### **Key Technologies**

#### **High throughput optics:**

- High performance replicated segments and shells
- High reflectance coatings
- High strength/mass materials for optical surfaces

#### High energy band:

- Multilayer optics
- CdZnTe detectors

#### High spectral resolution:

- 2 eV calorimeter arrays
- Coolers
- Lightweight gratings
- CCD arrays extending to 0.25 keV

#### **Optical bench:**

- Stable (time and temp.)
- High strength/low weight materials





# **Technology Development Approach**













- Extension of demonstrated technology
- Parallel path technology development with defined selection milestones
- Leverages other technology investments:
  - Cross-enterprise (coolers, optics, X-ray calorimeter)
  - SR&T (CdZnTe and calorimeter detectors, multi-layer coatings)
  - NASA Center IR&D and DDF (optics, coolers, calorimeter)
  - SBIR (calorimeter and cooler)
- Greater investments now required for the transition from component bread boarding to system technology demonstrations



# The Constellation-X Technology Roadmap





# **SXT Segmented X-ray Mirrors**

- Requirement: Highly nested reflectors with 1.6 m outer diameter, low mass and angular resolution ≤ 10 arc sec (HPD)
  - Segmented technology meets mass requirement
  - Requires 10X improvement in resolution and 4X increase in diameter compared to Astro-E

### Progress:

- Demonstrated 30 arc sec HPD for glass segment pairs replicated off Astro-E cylindrical mandrels
  - > Performance limited by Astro-E mandrel quality
  - > Preparing to replicate glass using 0.5 m precision Wolter Mandrel
- Replicated Wolter surface onto 0.5 m Be substrate
- Began design and procurement of large reflector replication equipment
  - > Received large oven
  - > Invented and demonstrated portable replication device
- Developed modular flight concept and initiated Engineering Unit design
- Initiated procurement for 1.6 m diameter segment mandrel
- Partners: GSFC, MIT, SAO, MSFC



Small glass segment pair on alignment fixture



Be replicas and mandrel



Etched Si alignment microcomb



# **SXT Strawman Design**

#### **Engineering Unit**



#### **Prototype Unit**



Single inner module with

- 0.5 m dia. reflector pair (replicated from Zeiss precision mandrel)
- Parabolic (P) and Hyperbolic (H) submodules
- First modules to be aligned using etched silicon microcombs

Flight Scale Assembly of

- 3 modules (2 outer and 1 inner)
- Largest diameter same as for flight -1.6 m
- Each module has 3 to 9 reflector pairs
- Demonstrates module to module alignment

Flight Unit Reflectors

(2)

Housing

Full flight Assembly

- 1.6 m outer diameter
- 18 Small Modules
- 70 to 170 reflector diameters



# **SXT Technology Roadmap**





# X-ray Calorimeters

- Requirement: 2 eV FWHM energy resolution from 1 to 6 keV at 1000 counts/s/pixel in 32 x 32 pixel array
- Parallel Approach: Transition Edge Sensor (TES) and NTD/Ge Calorimeters
- Progress:
  - Previously demonstrated 2 eV resolution (at 1.5 keV) in TES with large membrane
  - New! Achieved adequate thermal isolation using a narrow perforated perimeter of thin silicon-nitride around the TES thermometer. Obtained 4.0 eV resolution (at 1.5 keV) on first run without optimizing!
    - > Breakthrough paves the way for the compact pixels required by Constellation-X spatial resolution
  - Quantified noise contributions for current state-of-the-art TES energy resolution budget
  - Fabricated 2 × 2 TES array for initial cross talk measurements
  - Demonstrated a new imaging TES approach that will potentially enable increase in field of view without increase in electronics
  - Achieved 4.8 eV resolution over full range (1-6 keV) with NTD/GE detector
- Partners: GSFC, NIST, SAO, UW, LLNL, Stanford







# X-ray Calorimeter Technology Roadmap





# **Cooling System for X-ray Calorimeter**

- Requirement: Long life cooling system to provide 40 to 65 milli Kelvin to X-ray calorimeter
- Approach: Sub10-Kelvin mechanical cooler to provide heat sink to sub-Kelvin Adiabatic Demagnetization Refrigerator (ADR)
- ADR Progress:
  - Demonstrated operation of two new heat switches: a gas-gap switch and a magneto resistive switch
  - Assembling a three-stage continuous ADR demonstrator using these heat switches and previously developed components over the next few months
  - Identified engineered refrigerants that may offer lower magnetic fields and higher cooling power in the 1-10 K range
  - Funded by Cross Enterprise Technology Development Program
- Mechanical Cooler Progress:
  - 70 K turbo-Brayton cooler for HST successfully completed mechanical and thermal testing
  - Performed highly successful 6-10 K flow-through test of the Turbo alternator
  - Funded by Cross Enterprise Technology Development Program and SBIR



**Turbo-alternator Test Apparatus** 

• Partnership: GSFC, JPL, Creare, Energen, Houston U., Berkley



# **Top Level Schedule** (In-guide FY07 New Start)





# Summary

- Constellation-X emphasizes high throughput, high spectral resolution observations – the next major objective in X-ray astronomy
- Chandra observations continue to demonstrate the richness of X-ray spectra
- Substantial technical progress achieved at component level
  - Replicated reflector performance
  - Calorimeter single pixel spectral resolution
  - Hard X-ray telescope optics and detectors performance now meets requirements
- Ready to ramp up technology development to flight scales to demonstrate TRL6
  - Optics Engineering and Prototype unit demonstrations
  - Flight size reflector replication
  - Large calorimeter arrays and readout systems